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Introduction
This study reports our experiences in simulating an injection moulding
process, and in particular the filling of a thin-walled cup-shaped mould with a
polystyrene material. The process is highly thermally convective, with the hot
injected polymer being cooled by the mould walls as the filling proceeds.
Characterization of the material has been undertaken at the Technology
University of Eindhoven, forming part of a project in which technology has
been developed combining an experimental-simulation study. This is directed
towards multi-layer injection moulding, where multiple materials may be
simultaneously or sequentially injected into a mould.

A finite element simulation code is employed which has the facility to track
fluid particles, moving fronts and deformation patterns throughout the filling
process. This is a dynamic operation, that involves a continually expanding
wetted domain and demands the use of a transient algorithm. A Taylor-
Galerkin/pressure-correction time-stepping scheme is invoked for this purpose.
A full generalized Newtonian treatment is taken, capable of extension into three
dimensions, involving an energy equation for the transport of temperature as
discussed in[1-3]. A shear-thinning model is adopted and viscous dissipation is
taken into account.

In the literature, a Hele-Shaw approximation[4] has been used widely to
simulate the injection moulding process, and was originally developed for slow
flows under isothermal conditions. The key assumption of this approach is that
a constant pressure applies in the gapwise direction (z), between two parallel
planes (x-y) with vanishing velocity normal to the principal flow direction.
Hence, the pressure field can be resolved in two dimensions, i.e. across the mid-
plane between the parallel planes, and the velocity field may be integrated
analytically across the gap between the planes. Richardson[5] first described
this approach as a lubrication approximation, in a cavity mould filling
operation. Williams and Lord[6] and Lord and Williams[7] employed a finite
difference method to predict the non-isothermal temperature distribution in the
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gapwise direction for filling cavity-shaped moulds, including a sprue, runner
and gate system. Their simulation was restricted to flow in a straight channel.
Hieber and Shen[8] introduced a finite element/finite difference formulation for
the filling of thin-walled shaped moulds, in which the mid-plane (x-y) is
discretized by finite elements, with the gapwise and time derivatives discretized
by finite differences. This approach is inappropriate for thick-walled moulds,
where the flow front does not maintain a flat shape. Vos et al.[9] proposed a
multilayer injection moulding technique, again with recourse to a Hele-Shaw
approximation. The flow front consequently flattens, so that fountain flow
cannot be predicted in the z-direction across the gap of the mould. To capture
the important heat advection effects in the gapwise direction, Crochet et al.[10]
studied filling problems for arbitrary shaped-cavities with a Hele-Shaw
approach. Although the pressure and temperature fields are solved following
Hieber and Shen[8], special consideration is given to the thermal conditions at
the flow front to address the onset of fountain flow. That is the temperature
distribution at the flow front is consistent with the streamlines. This is a major
improvement, but again it is not applicable for thick-walled moulds because the
flow front is restricted to a flat surface in the z-direction. Mavridis et al.[11]
developed a transient free-surface scheme to model the motion of the front and
simulate fountain flow. In their work, a moving contact line is introduced where
the free surface intersects a stationary boundary. The location of this
intersection influences the extent of application for the no-slip boundary
condition up to the contact line, where a stress singularity results. A three-
dimensional boundary element approximation was recently reported by Khayat
et al.[12] for gas-assisted injection moulding. The drawback to this method is
that the boundary integral technique is limited and not easily extended to non-
linear systems. A so-call fringe element generation method was proposed by
Sato and Richardson[13] for viscoelastic materials in a moulding process under
isothermal condition. This method is a localized mesh regeneration technique,
that effects adjustments only in the neighbourhood of the front, as opposed to a
complete domain remesh. It is similar to a source propagation method in tracing
an advancing flow front, cited by Sitters[14] and employed in the present work.
On the experimental side, Schmidt[15] used colour tracers to visualize the fluid
deformation patterns and fountain flow. Similar results have been reported also
by Coyle et al.[16] and Chu et al.[17].

Of critical importance is the tracking of the moving front as the polymer melt
fills the mould (the orientation and shape it adopts), and the location of particle
bands behind the front. The deformation patterns of the polymeric bands that
are traced out during the filling and cooling process may ultimately be used in
an inverse operation, to dictate when and where to inject bands of material, so
as to realize a layered configuration. In a complex shaped mould, this process is
non-trivial, due to the rheological complexity and processing conditions
involved. Yet often a single injection step is necessary in order to achieve this
multi-layered form. The present analysis goes some way to establishing this
technology by considering truly thin-walled moulds, studying the motion of
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individual injected material bands, the tracking of melt fronts and the changes
in material and flow properties whilst processing. A thin-walled cup shaped
mould is considered, which is illustrated schematically in Figure 1. The flow
domain comprises three parts:

(1) an entry tube with radius of 1.5mm at the inlet and 3mm at the first re-
entrant corner and length of 15mm;

(2) a disc-shaped region of 30mm radius and 3mm thickness; and
(3) an annular region of 34mm outer radius at the edge of the cup, 42mm

beyond the disk and 3mm thickness.
The operating conditions are an entry melt temperature T0 = 503 °K, a mould
wall temperature Twall = 330 °K and a flowrate Q = 0.034cm3/sec.

Governing equations
The relevant equations governing such flows are the generalized momentum
and energy equations for inelastic fluids under incompressible and non-
isothermal conditions, but in the absence of forcing functions. These equations
may be expressed as

(1)

(2)

(3)

where u = u(x, t), p = p(x, t) and T = T(x, t) are velocity, pressure and
temperature with dependence on space x and time t, subscript t denotes ∂

∂t , ρ is
the density taken as 1000kg/m3, µ is the shear viscosity, cp is the heat capacity
at constant pressure taken as 1800 J/°K/kg, κ is the thermal conductivity taken
as 0.16 W/m/°K, and Φ is the viscous dissipation, a function of the second
invariant of the rate-of-strain tensor I2. In particular, Φ = 12 I2. A Carreau-Yasuda
model, represents the viscosity behaviour as

Figure 1.
Schematic diagram for
filling thin-walled cup

Entry tube region

Disc-shaped region

Annular region

Rim
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(4)

with

(5)

(6)

where γ is the shear rate, m is the power-law index taken as 0.48; A1, A2, B1, B2
are material constants taken as A1 = 11130 °K, A2 = 11390 °K , B1 = 9.23 × 10–7

Pa.sec , and B2 = 6.69 × 10–11 sec. A glass transition temperature Tg = 370 °K is
adopted in the near wall vicinity, at which a Newtonian viscosity plateau is
imposed to model the localized highly viscous attenuation.

A schematic representation for a pipe-shaped mould in Figure 2 illustrates a
typical flow domain portion, to which the following boundary conditions are
applied,

inlet (Γ1): u = (vr, vz) and T prescribed as vr = 0, vz = vz(r) and T =
Tmelt,

walls (Γ2): no-slip, vr = vz = 0 and T = Twall,
symmetry (Γ4): vr = 0, τrz = 0 and ∂T

∂s = 0,
front (Γ3): (τ – δp).s = 0 and ∂T

∂s = 0,

where a boundary Γi has a time level superscript of either n or n + 1. vr and vz
are the radial and axial velocity components respectively, τ is a stress tensor, δ
is a unit tensor, Tmelt and Twall are the melt and wall temperature respectively,
and s is an outward pointing normal to the boundaries Γ3 or Γ4.

The flow problem is categorized through dimensionless groups of Reynolds
number, Re, thermal Peclet number, Pe, and Griffith number, Gf, defined as

Figure 2.
Flow domain and
moving boundaries
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(7)

(8)

(9)

where L is a characteristic length scale, taken as the radius of the mould at the
injecting point, V is a characteristic velocity, taken as a mean velocity at the
injecting point, and µo is a reference viscosity associated with a zero shear rate
and a reference temperature of the inlet melt flow. A characteristic time scale is
then LV. Here the magnitude of Re relates to the inertia in the flow, while that of
Pe shows the importance of thermal convection to conduction, and Gf describes
the temperature increase due to viscous heating. Taking viscosity scaled with
respect to µo, equations (1-3) may be interpreted non-dimensionally in the form:

(10)

(11)

(12)

The magnitude of those dimensionless groups are Reynolds number Re = 3.84
× 10–6, thermal Peclet number Pe = 162, Griffith number Gf = 4.31 × 10–3 and Gf

Pe
= 2.66 × 10–5. These are model representations of typical physical processing
conditions, where Pe may range from O(103) to O(105).

Numerical scheme
Based on a semi-implicit Taylor-Galerkin finite element method discussed in
Hawken et al.[18], and extended to a thermal context by Ding et al.[1], equations
(10)-(12) are discretized first in time according to a Taylor series prior to a
Galerkin spatial discretization. The pressure equation is decoupled from the
momentum equation through a projection method. This leads to a Poisson
equation to solve for the pressure, which in turn is used to correct the velocity
solution. To aid stability, an implicit treatment for diffusion is adopted for both
momentum and energy equations. Solutions are then obtained through
fractional stages within each time step. The fully discretized forms for the semi-
implicit Taylor-Galerkin/pressure correction scheme over a time step ∆t = tn+1

– tn may be expressed as:
Stage 1a:

(13)
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(14)

Stage 1b:

(15)

(16)

Stage 2:

(17)

Stage 3:

(18)

where Un, Pn and Tn are nodal vectors at time tn for velocity, pressure and
temperature respectively; U* is an intermediate non-solenoidal nodal velocity
vector introduced in step 1a; M, Su, ST, N(U), K and L are mass matrix,
momentum diffusion matrix, thermal diffusion matrix, convection matrix,
pressure stiffness matrix and divergence/pressure gradient matrix respectively;
Φ is the nodal dissipation vector. The above notation may be interpreted at the
component level, through quadratic functions φk and linear functions ψk
defined continuously on a triangular tessellation of the domain, as

(19)

(20)

(21)

(22)

(23)

(24)



Injection
moulding

process

757

(25)

(26)

(27)

(28)

(29)

A Crank-Nicolson splitting of pressure terms over time is used giving the above
pressure-correction representation. The algebraic systems that emerge are
solved using both direct and iterative techniques. All mass-matrix based
equations are solved with an element-wise Jacobi iteration, using mass-lumping
to enhance stability[19]. The pressure equation is solved through a Choleski
method using a bandwidth reduction strategy.

Front tracking
In the literature, a free surface technique was developed by Mavridis et al.[11] to
trace the transient advancement of the flow front during the injection moulding
process. From the point of view of mass conservation, a free surface is a
material surface across which fluid does not pass. To maintain the motion of the
free surface, a contact line theory was employed, where the free surface
intersects a solid wall. The contact line appears to move as new material
reaches the wall from the free surface, leading to a stress singularity when a no-
slip condition is applied at the wall. This issue is avoided in our approach as the
wall contact point is taken as fixed, only to be relocated at discrete moments in
time when the front proximity to the wall is sufficiently close.

A so-called source propagation scheme is employed in this paper for front
tracking. The scheme is based on Huygens’ principle from the theory of light
propagation, that is, a point source can fill an area with a radius proportional to
its strength. Following this principle, a source propagation technique was
employed by Sitters[14] to model the movement of the flow front during a filling
operation. Here, this scheme has been updated for triangular finite element
meshes shown schematically in Figure 3. The shaded domain indicates a filled
wet zone and the unshaded region indicates a dry region, yet to be filled. Solid
lines constitute a fixed background mesh over the domain, and dashed lines
indicate where local remeshing is to be performed. 
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Figure 3.
Illustration of source
propagation scheme
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A source point has dual attributes of mass and velocity, with the latter relating
to how far the front will swell in a fixed time. Candidate source point velocities
are sampled on the current front and their projected swelling distances are
calculated, with respect to intersection on the background mesh local to the
front. A flow front is therefore considered as a series of point sources, that are
indicated as arcs of circles in Figure 2. The strength of these point sources is
proportional to their normal velocity |u|, as shown by arrow in Figure 3a. On an
element of the background mesh, the dry part of an element edge that intersects
with the front is delineated by a series of edge points. This is for the purpose of
recording the limits of filling over the edge for the time step. Then, an edge point
j (indicated by o) can be filled by a point source i (e.g. A, B, C, D shown as •),
located in the same element, if (|ui|∆t–dij) > 0. Here dij is the distance between
points i and j as shown in Figure 3b. The filled edge point j then becomes a new
point source and its strength is given by max[(|ui|∆t–dij)/∆t] for all point
sources i. The strongest source point will wet the furthest edge points along any
particular edge, as in Figure 3c. This then delimits the perimeter of the wet mesh
to be adopted at the end of the filling time step. The procedure is repeated for all
background elements containing flow front segments providing an updated
front position OAB as shown in Figure 3b and 3c, where A and B indicate new
front intersections with the background mesh.

Local remeshing, performed around the flow front based on the background
mesh, generates a new wet mesh, as shown in Figure 3d with updated front
location ABCD denoted by o. This scheme has the advantage that it
accommodates for flow around sharp corners. It is less appropriate for
convection dominated problems, since the filling process centred at each
candidate filling point is assumed to be uniform in all directions. An aside is
that source propogation is complicated to implement, owing to the intricacies
involved in local remeshing, and projection onto the background mesh each
occasion a new front position is located. 

With an updated wet mesh, the Taylor-Galerkin algorithm is invoked to
evaluate the temporal increment over [tn, tn+1] of the solution on the field. This
step enforces mass conservation on the updated mesh up to the later time tn+1.
As the flow front progresses from one position at tn, to a second at tn+1, the
imposed boundary conditions on the field equations are adjusted. The
momentum traction boundary conditions are homogeneous and arise naturally
in the problem formulation for both wet and dry front positions. The imposed
homogeneous Neumann boundary conditions on the Poisson pressure
difference equation still remain, as we can take u* to equal un+1 on the larger
domain boundary at tn+1. This implies therefore that the boundary condition
term for this equation in weak form is:

taking the extended definition of ∇ pn over the wider domain with the boundary
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specified by Γn+1 at tn+1. This is true, as the pressure gradient term ∇ pn must
vanish on the dry part of the mesh, that is subsequently filled over the interval
[tn, tn+1]. To further enhance temporal accuracy we have also adopted a sub-
time stepping technique, an iterative correction scheme, to solve the field
equations for each estimated new front position. Based on an initial empirical
estimation we have formed a fixed number of sub-time steps of say ten to 15.
This approach corrects for inaccuracies that can arise in a crude estimation of
front position and solution of the dynamic flow equations.

For problems with a complicated geometry, for example involving a corner in
the domain, the following criteria prove of assistance as shown in Figure 4. If a
flow front OABCD at time tn+1 crosses a fixed re-entrant corner P, take OAPBCD
instead of OABCD as shown in Figure 4a. This gives rise to two segments of the
current front OAP prior to corner P, and PBCD beyond P, each to be dealt with
independently. For a front segment PBC that has advanced some way beyond
the corner P, there are some additional heuristics to consider. For precision in
front location, there is now not only the proximity of particle B to the wall to
adjust for, but also we must limit the extension of the front portion PB. As
shown in Figure 4b, if the distance between particle B at the front PBC and the
wall satisfies δz < δmin, or the extension of PB exceeds a predefined limit as
governed through δr > δmax, then adopt ABC in place of PBC for the current
front location by extrapolation to the wall.

Particle tracking
As it is important to track material deformation (through movement of bands)
and particle histories behind the flow front during the filling process, it is
necessary to incorporate a particle tracking technique. A well established
Runge-Kutta scheme is adopted, which can be written as an explicit Euler step:

(30)

and an averaged correction step:

(31)

Figure 4.
Front adjustment of
flow around a corner
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where, for a particle denoted by i, xn
i is its location at time tn, pxi

n+1 is a predicted
particle position at time tn+1, cxi

n+1 is a corrected position at time tn+1, u(xi, t
n)

is the particle velocity at time tn, u(pxi, t
n+1) is the particle velocity at a

predicted position pxi
n+1 at time tn+1. This scheme is performed after stage 3 of

each time step of the Taylor-Galerkin algorithm, as described in section 2.
Figure 5 shows this tracking procedure schematically. For practical

convenience, a small gap is introduced between the first particle and the wall of
the mould to avoid the difficulty of dealing with stationary particles. To
maintain a uniform particle distribution along the band, it is appropriate to
update the position of neighbouring particles according to the average distance
between any two particles. The position of particles along the band may be
relocated if their neighbouring separation distances (δ) exceed limiting criteria,
such as δ > δmax or δ < δmin where δmax = 1.5 δaverage and δmin = 0.5 δaverage.
This naturally invokes a dynamic readjustment of the particle positions. These
strategies may be modified to best suit the particular problem in hand.

Numerical results
The simulation is based on a finite element mesh as shown in Figure 6, which
involves 944 triangular elements, 2,133 velocity/temperature nodes and 595
pressure nodes, giving 6,994 degrees of freedom in total. The boundary

Figure 5.
Particle tracking for

material bands at times
(a) t1, (b) t2

FrontBand 1
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conditions of the flow domain are defined in section 2, where the melt
temperature at the injection point, i.e. the inlet of the flow domain, is taken as To
= 503 °K, the wall temperature of the mould is fixed as Twall = 330 °K and an
adiabatic condition is applied to the flow front throughout the whole process. In
order to trace the material deformation pattern accurately, 2,000 particles are
employed for each band.

As described above, the thermal Peclet number employed is about Pe = 102.
In practice Pe = 105 is not uncommon, and this study is intended to provide
insight and guidance for these more realistic conditions. Figure 7 shows the
movement of the flow front and the deformation patterns of the material bands
during the filling process at dimensionless times t1 = 1, t2 = 16, t3 = 32, t4 = 43,
t5 = 70 and t6 = 105. The flow front smoothly negotiates the entry tube region
into the disc-shaped region and the re-entrant corner into the annular region,
before finally reaching the rim region. Compared with the results for a thick-
walled cup[20], as shown in Figure 8 at times t1 = 5 through t8 = 55, a fountain
flow pattern is barely discernible, owing to the relatively thin-walled
dimensions of the cup. The pressure gradient in the cross flow direction is
almost constant as the filling progresses, so that fountain flow is suppressed.
Alternatively, we have observed a fountain flow in the filling of a thick-walled
cup as shown in Figure 8, where the pressure gradient is significant in the
gapwise (thickness) direction. These results are physically reasonable and
consistent in deformation patterns with examples cited in the literature,
covering similar flow configurations with fountain flow and filling[14-16,21,22].

Figure 9 shows the temperature contour plot during the filling process,
where lighter shades of grey imply hotter material. The plot indicates that heat
is strongly convected into the mould, as the melt is injected. This is due to the
relatively large value of thermal Peclet number and the effect of cooling (the hot

Figure 6.
A finite element mesh
for a thin-walled cup
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melt at the injection point and cold mould wall). Heat convection continues, but
weakens as the melt progresses along the disc-shaped region, and finally
disappears after the melt has passed beyond the second re-entrant corner and
entered the annular region. This may be explained by a significant reduction in
local filling speed, as the melt fills the disc-shaped zone and the radius of the
wet domain increases. At the same time the flowrate at the injection point
remains constant.

Concluding remarks
Here, we have successfully demonstrated the use of a numerical inelastic flow
solver as a prediction tool for the filling phase of an injection moulding process.
We have been able to accommodate thin-walled moulds and provide physically
realistic simulations for this complex cooling process using inelastic fluid
models. An accurate localized remeshing and front tracking technique has been
implemented effectively and material deformation patterns have been
presented.

Figure 7.
Deformation patterns

for filling of a thin-
walled cup

t1 = 1 t2 = 16

t3 = 32 t4 = 43

t5 = 70 t6 = 105
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As the thermal Peclet number grows to O(105), with shorter injection times and
larger velocities, the problem becomes significantly more thermally convective.
This will have a marked effect within the thermal boundary layers on the mould
walls, reducing their width. Owing to the thin-walled nature of the mould here,
such sharp solution gradients present a formidable challenge to any numerical
scheme to capture accurately. The convection-diffusion problem itself
introduces non-trivial numerical challenges, as the convection increasingly

Figure 8.
Deformation patterns
for filling of a thick-
walled cup

t1 = 5 t2 = 10

t3 = 15 t4 = 20

t5 = 25 t6 = 35

t7 = 45 t8 = 55
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dominates. This will require sophisticated additional numerical strategies to
resolve successfully these extended ranges of working conditions. It is intended
to implement streamline upwind weighting to attack such severe demands with
careful attention to mesh resolution in cross-stream directions to capture the
thermal boundary layers.

Promising future directions of research on this topic are as follows. Three-
dimensional calculations are a necessity for small-scale or complex shaped
products. The implication are large-scale computations, that dictate the need for
efficient robust solvers. Viscoelastic thermal rheological modelling is desirable
for filling flows around complex geometrical mould shapes. Once multiple
layered problems are resolved, experimentation with different injection
sequences will be possible. The inverse problem of dictating the appropriate
initial configuration of pre-injected material layers may then be attempted
effectively.
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